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drain bias and this is well matched by the model in general, although
the agreement is poorer for the 1.0 V drain bias. Graphs comparing
measured and simulated S-parameters as a function of gate bias show
good agreement. The fit to the I4s data is good in general except near
pinch-off where the independence of X\, mA, k and m« from Vs may
be a source of some model inaccuracy.
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Nonlinear Mixer Gain Calculations
for Josephson Junctions

Hoton How, Ta-Ming Fang, Carmine Vittoria, and Allen Widom

Abstract—We have numerically solved the steady-state solutions of the
initial value problem associated with a current-driven Josephson weak-
link junction shunted by an Ohmic resistance. The nonlinear mixing
action of the junction leads to Shapiro steps in the dc response with step
height in units of the mixing frequency. Mixer gains have been calculated
with a wide range of parameter values and intrinsic chaos are observed
whenever Shapiro steps are prevalent.

1. INTRODUCTION

The current-driven Josephson weak-link can be formulated in terms
of the resistively shunted junction (RSJ) model that may be cast
in the form of a first-order differential equation, shown in (1). In
integrating the equation from ¢ = 0 to obtain a steady-state solution,
one is faced with the problem that the initial phase, ¢(0), across
the junction is unknown. The solution to (1) is very sensitive to the
initial condition on ¢, and a slight change in the initial condition
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may result in chaotic behavior of ¢ [1]. In the absence of noise the
steady-state solution, if it exists, the system is required to return to
its initial phase of 27 after one period of the sinusoidal drive (or
drives). This determines the asymptotic solution of the system and
results in Shapiro steps in units of the mixing frequency in the dc
response. We found that intrinsic chaos is most likely to be observed
near these step edges. In the presence of noise, the system may not
be able to return to its initial phase after one period. and hence no
steady-state solution is possible. This leads to extrinsic chaos, since
it can be induced by external noise [2]. Traditionally, the Josephson
mixer gain is calculated from a linearized perturbation theory [3]-[7].
In the linearized solution. one assumes that the response in ¢ can be
approximated by a linear combination of the dc and rf responses, since
the rf excitation amplitude is small compared to the dc biasing current.
As such, one can then apply circuit theory analysis as in the so-called
“conversion matrix method.&r Here we present a systematic method
by which the gain is calculated in the nonlinear regime. We find that
the mixer gain can be much greater than unity for small carrier current
and large local oscillator current under optimal coupling of the load
resistance to the junction-shunting circuit. This high gain effect of a
Josephson mixer has also been observed experimentally [8].

II. CALCULATION

The Josephson mixer circuit shown in the inset of Fig. 3 leads to
the following first-order equation [6]:

ip -+ iscoswst+ipcoswrt + iy(t) —sing = 7(dé/dt), (1)

where ¢ is the phase difference of the superconducting wave function
across the junction and ip, s, ¢z, and i are, respectively, the dc
current, rf currents at the signal carrier frequency, ws, the local-
oscillator frequency, wp, and the noise current, all normalized to
the critical current of the junction, I.. In (1). 7 = h/2eRcl.,
R;' = ZZ'+ R™" and R and Zg are the shunting and external
load resistances. We assume the thermal current ¢ ;v possesses normal
distribution with () = 0 and (i%) = 4kpTB/RI?, where
B denotes the frequency bandwidth of the detector and T is the
junction temperature. Note that in (1) we have ignored the shunting
capacitance across a Josephson weak-link junction, since it is assumed
to be small. Therefore, if the initial value of ¢ is known at ¢ = 0,
denoted as a, ¢(a; t), can be calculated by integrating (1) utilizing
a fourth-order Runge-Kutta algorithm in double-precision arithmetic.

If there are no 1f currents and only a dc current applied to the
junction, the solution is straightforward, since the differential flux
across the junction is zero, and hence & = sin~'(ip/I.). In a
typical mixer experiment, two 1f currents and one dc current source
are applied to the junction simultaneously. If the dc source is applied
firstly. ¢ is unknown upon application of the rf currents. The onset
times of these sources may not be precisely noticed under most
experimental conditions. Similarly, if we reverse the experiment, ¢
is still an unknown quantity in the presence of all three sources. The
dilemma is then what to choose for an initial condition on ¢ in order
to uniquely solve for ¢ as a function of time. In this paper, we are
interested 1n the steady-state solution after all the transients have died
out. One can solve this problem empirically by choosing different o
values and noting what is the response of ¢ after one common period
T, ¢(o; T'). Here, we assume 7 to be the period at the mixing
frequency, which should not be confused with the symbol used for
temperature. If one plots the phase change, ¢(a; T')-c, as a function
of a, one may find a value of «, say a,, at which the phase change is

0018-9480/95$04.00 © 1995 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 1, JANUARY 1995 217

3 0.025
25 (2
£
[
219 o
— 0 3
o infl 7
% 15 0''c
S
1t {1): 0 rf-source
(2): 1 rf-source
0‘ 5[ g (3): 2 rf-sources
“ g~ ] SolidLines: without noise
S @ DashLines: with noise
O = L L 1 1
0 0.5 1 1.5 2 25 3

i/,

Fig. 1. 1-dc response of a Josephson weak-link junction.

zero modules by 27. We choose «, as the initial phase of the system,
since it does not change with time. As such, a steady-state solution
of (1) is obtained. We found that «, is unique for the following
calculations (that is, the steady-state solution of (1) is unique in the
absence of noise): In the presence of noise, we integrate (1) from
t =0tot = T, still using the same initial conditions ¢(0) = ..
However, the noise current ¢ (¢) will then be randomly generated
through a random number generator. The solutions are calculated one
hundred times with a different random noise generation on each of
the runs. We average over these one hundred solutions to arrive at
the average solution of ¢(¢) that satisfies (1) in the presence of noise.
The above solution procedure is roughly valid if the noise level is
not too high. If the noise level is high, the steady-state solution of
the system may no longer exist and extrinsic chaotic motio edges.

III. RESULTS

- In the following, the voltage will be normalized with respect to
Rgl.. The induced voltage at the Josephson junction is

V = rdé/dt. @)

The dc and f responses of the system may be expressed in the
frequency domain by Fourier-transforming the time-domain solutions.
The resultant dc and mixing voltages are denoted as Vy. and V.,
which are evaluated at dc and mixing frequency, wy = ws — wr,
respectively. The mixer gain is defined as

G =|Viy/isVs|/(r + 1), 3)

where r = Z¢ /R and Vs denotes the voltage at the carrier frequency,
ws. In the following, we assume fs = ws/2n = 10GHz, fi =
wr./2x = 9 GHz, and T = 1 nsec. Fig. 1 shows the dc response
of the system if the junction is excited by 0, 1, and 2 rf sources, as
referenced in curves (1), (2), and (3), respectively. In Fig. 1, 7 = 0.01
nsec and (i%;) = O for the solid lines and (i%/) = 0.25 for the dash
lines, which have been averaged over 100 runs. For curves (1), we
apply one source across the junction, ip = 1, is = iz, = 0, which
reduces to the well-known V-1 characteristics of a Josephson junction
with and without noise. For curves (2), we apply two sources in which
ip =ts =1, iz = 0. Shapiro steps of height wst (= 0.62831) are
clearly calculable. For curves (3) in which we have three sources
ip = ig = iz = 1, the Shapiro steps are composed of smaller steps
in units of wys, which is one-tenth of the height observed in curves
(2). We note that the noise effect in Fig. 1 is to round off the sharp
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Fig. 3. Mixer gain as a function of 7.

corners appearing in the noiseless cases, as expected. The inset of
Fig. 1 shows the mixer gain associated with the solid curve of (3)
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Fig. 5. Optical mixer gain as a function of I; and I,.

(without noise). In this example. the (intrinsic) chaotic structure of
the calculated gain is by no means random, since {i%’) = 0. Rather, it
corresponds to the rising step edges shown in the solid curve of (3).

Fig. 2(a) shows the Fourier spectrum of V (¢) for the following
parameters: ip = is = ir = 2, {ik) = 0.01, and 7 = 0.3
nsec. It is seen in Fig. 2(a) that the spectrum consists of components,
which are considerably distinguished from zero, at 0, 1, 9, 10, and
19 GHz. Therefore. the nonlinear frequency mixing occurs at two
frequencies, 1 and 19 GHz, which are the difference and the sum
of the carrier frequency, 10 GHz, and the local-oscillator frequency,
9 GHz. The gains, multiplied by (1 + r), at 1 and 19 GHz are,
respectively, 0.232 and 0.043. In order to distinguish the mixer from
a Josephson oscillator in which the oscillation frequency depends
only on the dc current drive, ip, we have plotted in Fig. 2(b)—the
Fourier spectrum of V'(¢) for another set of parameters: ip = 3.5,
is =i =2, {(i%) = 0.01, and 7 = 0.3 nsec. Since only ip, but
not the other parameters, has been changed, one would expect the
oscillation frequency to change accordingly if the system describes a
Josephson oscillator. However, in Fig. 2(b) mixing frequencies still

occur at 1 and 19 GHz, an indication that the junction described by
(1) does specify a nonlinear frequency mixer. The gain, multiplied
by (14 r), at 1 and 19 GHz are, respectively, 0.065 and 0.015.

Fig. 3 shows the gain, GG, as a function of 7. Here, we have used
ip = is = i = 2, and (%) = 0.01. For large 7 values (> 0.2
nsec) the calculated mixer gain approaches a constant. We have found
in general that the chaotic motion of the system is most likely to be
observed if Shapiro steps are prevalent in the dc response. The gain
structure of Fig. 3 is quite universal, and it allows us to estimate
the optimal gain occurring at an optimal coupling 7 for a given set
of circuit parameters, ¢p, ¢s, ¢z, and 4. Figs. 4 and 5 show such
drawings. In Fig. 4, optimal 7 is plotted against /s and ip, and in
Fig. 5 optimal gain, multiplied by (1 + r), is plotted against ¢5 and
ip. In both figures, i = 2 and {i%) = 0.04 (averaged over ten
runs). It is seen in Fig. 5 that for a small value of is, the mixer gain
can be even larger than unity for suitably chosen biasing conditions.
This has been experimentally confirmed by Taur et al. [5], indicating
the usefulness of a Josephson weak-link junction to be used as a
high-gain low-noise broadband mixer.

IV. ConcLusioN

We conclude that the steady-state solutions of a Josephson circuit
can be found by imposing a periodical condition on the system’s
initial phase. The appearance of intrinsic chaos in a Josephson
junction may be associated with Shapiro steps in the dc response.
Thus, one should avoid biasing Josephson junctions where there is
a Shapiro step, since it represents a potential for chaotic behavior
depending on the noise level of the system. Mixers with gain larger
than unity can be realized utilizing a Josephson weak-link junction.
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