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drain bias and this is well matched by the model in general, although

the agreement is poorer for the 1.OV drain bias. Graphs comparing

measured andsimulated S-parametersas afunction ofgate bias show

good agreement. The fit to the ~ds data is good in general except near

pinch-oE where theindependence of A,m A, fiandm&from Yg, may

be a source of some model inaccuracy.
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Nonlinear Mixer Gain Calculations

for Josepltson Junctions

Hoton How, Ta-Ming Fang, Carmine Vittoria, and Allen Widom

Abstract-We have numerically solved the steady-state solutions of the
initial valne problem associated with a current-driveu Josephson weak-
link junction shunted by an Ohmic resistance. The nonlinear mixing
action of the junction leads to Shapiro steps in the dc respouse with step
height in units of the mixing frequency. Mixer gains have been calculated

with a wide range of parameter values and intrinsic chaos are observed
whenever Shapiro steps are prevalent.

I. INTRODUCTION

The current-driven Josephson weal-link can be formulated in terms

of the resistively shunted junction (RSJ) model that may be cast

in the form of a first-order differential equation, shown in (l). In

integrating the equation from t = O to obtain a steady-state solution,

one is faced with the problem that the initial phase, 4(O), across

thejunction is unknown. The solution to(l) isverysensitive to the

initial condition on q5, and a slight change in the initial condition
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may result in chaotic behavior of # [1]. In the absence of noise the

steady-state solution, if it exists, the system is required to return to

its initial phase of 27r after one period of the sinusoidal drive (or

drives). This determines the asymptotic solution of the system and

results in Shapiro steps in units of the mixing frequency in the dc

response. We found that intrinsic chaos is most likely to be observed

near these step edges. In the presence of noise, the system may not

be able toretttmto its initial phase after one period. and hence no

steady-state solution is possible. This leads to extrinsic chaos, since

it can be induced by external noise [2]. Traditionally, the Josephson

mixer gain is calculated from a linearized perturbation theory [3]–[7].

In the linearized solution, one assumes that the response in ~ can be

approximated by a linear combination of the dc and rf responses, since

the rf excitation amplitude is small compared to the dc biasing current.

As such, one can then apply circuit theory analysis as in the so-called

“conversion matrix method. &r Here we present a systematic method

by which the gain is calculated in the nonlinear regime. We find that

the mixer gain can be much greater than unity for small can-ier current

and large local oscillator current under optimal coupling of the load

resistance to the junction-shunting circuit. This high gain effect of a

Josephson mixer has also been observed experimentally [8].

II. CALCULATION

The Josephson mixer circuit shown in the inset of Fig. 3 leads to

the following first-order equation [6]:

~D+is COS~st+ iLcostiLt+ iN(t)–s inq$=~(d@/dt), (1)

where c$isthephas edifferenceofthe superconducting wave function

across the junction and iD, ZS, iL, and iN are, respectively, the dc

current, rf currents at the signal carrier frequency, ~s, the local-

oscillator frequency, tiL, and the noise current, all normalized to

the critical current of the junction, lC. In (l). r = 7i/2eRCI.,

RZ1 = ZG1 +R-l and R and ZG are the shunting and external

load resistances. We assume the thermal current ~,v possesses normal

distribution with (l,v) = O and (i~) = 4kBTB/RI~, where

B denotes the frequency bandwidth of the detector and T is the

junction temperature. Note that in(l) wehaveignored the shunting

capacitance across a Josephson weak-link junction, since it is assumed

to be small. Therefore, if the initial value of @ is known at t = O,

denoted as~, ~(ct; t), can recalculated by integrating (l) utilizing

afoufih-order Runge-Kutta algorithm in double-precision arithmetic.

If there are no rfcttrrents and only a dc current applied to the

junction, the solution is straightforward, since the differential flux

across the junction is zero, and hence a = sin ‘l(iD/l,). In a

typical mixer experiment, two rf currents and one dc current source

areapplied tothejunction simultaneously. Ifthedc source is applied

firstly, ~ is unknown upon application of therf currents. The onset

times of these sources may not be precisely noticed under most

experimental conditions. Similarly, if we reverse the experiment, #

is still an unknown quantity in the presence of all three sources. The

dilemma is then what to choose for an initial condition on d in order

to uniquely solve for @ as a function of time. In this paper, we are

interested mthe steady-state solution after allthetransients have died

out. One can solve this problem empirically by choosing different ~

values and noting what is the response of ~ after one common period

T, @(a; T). Here. we assume T to be the period at the mixing

frequency, which should not be confused with the symbol used for

temperature. If one plots the phase change, @(a; T)-a, as a function

of Q, one may find a value of O, say a o, at which the phase change is
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Fig. 1. l-de response of a Josephson weak-link junction.

zero modules by2r. Wechoose aa astheinitial phase of thesystern,

since it does not change with time. As such, a steady-state solution

of (1) is obtained. We found that u. is unique for the following

calculations (that is, the Sttxddy-state solution of (1) is unique in the

absence of noise): In the presence of noise, we integrate (1) from

t = O to t = T, still using the same initial conditions 4(O) = G.

However, the noise current iN(t) will then be randomly generated

through a random number generator. The solutions are calculated one

hundred times with adifferent random noise generation on each of

the runs. We average over these one hundred solutions to arrive at

the average solution of ~ (t) that satisfies (1) in the presence of noise.

The above solution procedure is roughly valid if the noise level is

not too high. If the noise level is high, the steady-state solution of

the system mayno longer exist and extrinsic chaotic motio edges.
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III. RESULTS

In the following, the voltage will be normalized with respect to

RGI.. The induced voltage at the Josephson junction is

V = r d~~dt. (2)

The dc and rf responses of the system may be expressed in the

frequency domain by Fourier-transforming the time-domain solutions.

The resultant dc and mixing voltages are denoted as V& and VW,,

which are evaluated at dc and mixing frequency, WM = ws — WL,

respectively. The mixer gain is defined as

G = lv&/ist(s//(r + 1), (3)

where r = ZG /R and VS denotes the voltage at the carrier frequency,

w., In the following, we assume ~.s = ws/2x = 10GHz, fL =
WL/’2T = 9 GHz, and T = 1 nsec. Fig. 1 shows the dc response

of the system if the junction is excited by O, 1, and 2 rf sources, as

referenced in curves (l), (2), and (3), respectively. In Fig. 1, T = 0.01

nsec and (i~) = O for the solid lines and (ifi) = 0.25 for the dash

lines, which have been averaged over 100 runs, For curves (l), we

apply one source across the junction, iD = 1, i,5 = i ~ = 0, which
reduces to the well-known V-J characteristics of a Josephson junction

with and without noise. For curves (2), we apply two sources in which

iD = is = 1, ~L = O. Shapiro steps of height ws~ (= 0.62831) are
clearly calculable. For curves (3) in which we have three sources
~D = ~s = ~L = 1, the Shapiro steps are composed of smaller steps

in units of WM, which is one-tenth of the height observed in curves

(2). We note that the noise effect in Fig. 1 is to round off the sharp
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Fig. 3. Mixer gain as a function of ‘r.

corners appearing in the noiseless cases, as expected. The inset of

Fig. 1 shows the mixer gain associated with the solid curve of (3)
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Fig. 5. Optical mixer gain as a function of 1, and ID

(without noise). In this example. the (intrinsic) chaotic structure of

the calculated gain is by no means random, since (i~) = O. Rather, it

corresponds to the rising step edges shown in the solid curve of (3).

Fig. 2(a) shows the Fourier spectrum of 1’(t) for the following

parameters: iLI = iS = iL = 2, (ifi) = 0.01, and r = 0..3

nsec, It is seen in Fig, 2(a) that the spectrum consists of components,

which are considerably distinguished from zero, at O, 1, 9, 10, and

19 GHz. Therefore. the nonlinear frequent y mixing occurs at two

frequencies, 1 and 19 GHz, which are the difference and the sum

of the carrier frequency, 10 GHz. and the local-oscillator frequency,

9 GHz. The gains, multiplied by (1 + r), at 1 and 19 GHz are,

respectively, 0.232 and 0.043. In order to distinguish the mixer from

a Josephson oscillator in which the oscillation frequency depends

only on the dc current drive, iD, we have plotted in Fig. 2(b)—the

Fourier spectrum of 1’(f) for another set of parameters: iD = 3.5,

is = i.c = 2, (ii) = 0.01, and T = 0.3 nsec. Since only iD, but
not the other parameters, has been changed, one would expect the

oscillation frequency to change accordingly if the system describes a

Josephson oscillator. However, in Fig. 2(b) mixing frequencies still

occur at 1 and 19 GHz, an indication that the junction described by

(1) does specify a nonlinear frequency mixer. The gain, multiplied

by (1+ r ), at 1 and 19 GHz are, respectively, 0.065 and 0.015.

Fig. 3 shows the gain, G, as a function of I-. Here, we have used

~D = ~s = (r_ = 2, and (i%) = 0.01. For large T values (> 0.2

nsec) the calculated mixer gain approaches a constant. We have found

in general that the chaotic motion of the system is most likely to be

observed if Shapiro steps are prevalent in the dc response. The gain

structure of Fig. 3 is quite universal, and it allows us to estimate

the optimal gain occurring at an optimal coupling ~ for a given set

of circuit parameters, iD, iS, iL, and iN. Figs. 4 and 5 show such

drawings. In Fig. 4, optimal T is plotted against is and iD, and in

Fig. 5 optimal gain, multiplied by (1 + r), is plotted against L,Sand

iD. In both figures, iL = 2 and (i~) = 0.04 (averaged over ten

runs). It is seen in Fig. 5 that for a small value of iS, the mixer gain

can be even larger than unity for suitably chosen biasing conditions.

This has been experimentally confirmed by Taur et al. [5], indicating

the usefulness of a Josephson weak-link junction to be used as a

high-gain low-noise broadband mixer.

IV. CONCLUSION

We conclude that the steady-state solutions of a Josephson circuit

can be found by imposing a periodical condition on the system’s

initial phase. The appearance of intrinsic chaos in a Josephson

junction may be associated with Shapiro steps in the dc response.

Thus, one should avoid biasing Josephson junctions where there is

a Shapiro step, since it represents a potential for chaotic behavior

depending on the noise level of the system. Mixers with gain larger

than unity can be realized utilizing a Josephson weak-link junction.
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